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Abstract. Many dimension reduction methods have been proposed to
discover the intrinsic, lower dimensional structure of a high-dimensional
dataset. However, determining critical features in datasets that consist
of a large number of features is still a challenge. In this paper, through
a series of carefully designed experiments on real-world datasets, we in-
vestigate the performance of different dimension reduction techniques,
ranging from feature subset selection to methods that transform the fea-
tures into a lower dimensional space. We also discuss methods that cal-
culate the intrinsic dimensionality of a dataset in order to understand
the reduced dimension. Using several evaluation strategies, we show how
these different methods can provide useful insights into the data. These
comparisons enable us to provide guidance to a user on the selection of
a technique for their dataset.

1 Background and Motivation

It is a challenge to understand, interpret, and analyze high-dimensional data,
where each example or instance is described by many features. Often, only a
few features are important to the analysis task, or the data naturally lie on a
lower-dimensional manifold. To reduce the dimension of the dataset, we can ei-
ther identify a subset of features as important using techniques such as filters
[1] and wrappers [2]. Or, we can transform the data into a reduced dimensional
representation while preserving meaningful structures in the data. These meth-
ods include linear projections, such as principal component analysis (PCA) [3],
as well as several non-linear methods that have been proposed recently [4].

To fully benefit from this wealth of dimension reduction techniques, we need
to understand their strengths and weaknesses better so we can determine a
method appropriate for a dataset and task, select the parameters for the method
suitably, and interpret the results correctly to provide insights into the data.
Some techniques, such as PCA, filters, and wrappers, have been studied ex-
tensively and applied to real problems. Others, such as the recent non-linear
dimension reduction (NLDR) techniques, have been explained, and their ben-
efits demonstrated, through the use of synthetic datasets, such as the three-
dimensional Swiss roll data. While the simplicity of these data sets is useful in
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visually explaining the techniques, it is unclear how they perform in real prob-
lems where the dimensionality is too high for visualization. Additional guidance
is needed to ascertain if these newer techniques are more appropriate than other
approaches in their ability to represent the data in the lower-dimensional space,
their computational cost, and the interpretability of the results.

In this paper, we present a series of carefully designed experiments with real
datasets to gain insights into the different dimension reduction methods. We con-
sider data from three science domains: astronomy, wind power generation, and
remote sensing, where these techniques are used to identify features important
to the phenomenon being observed, to build more accurate predictive models,
to reduce the number of features that need to be measured, and to reduce the
number of samples required to explore the feature space of a problem.

To provide guidance to a practitioner, we focus on three aspects of the task
of dimension reduction. First, we evaluate the techniques using datasets with
properties that arise commonly in practice, such as data with noise features,
with labeling based on different criterion, or with very high dimensionality. These
data may also have other unknown properties, such as inherent lower dimensional
manifolds. Second, we consider the task of setting the dimensionality of the lower
dimensional space. This important issue is rarely discussed in the context of real
datasets whose high dimensionality prevents visualization to understand their
properties. And finally, we consider ways in which we might interpret the results
obtained using the different methods.

This paper is organized as follows: we start by briefly describing data trans-
formation methods and feature subset selection techniques in Sections 2 and 3,
respectively . Next, in Section 4, we discuss how we can obtain the intrinsic di-
mensionality of the data by exploiting the information provided by these meth-
ods. In Section 5, we describe the scientific problems of interest, followed by our
evaluation methodology for the dimension reduction techniques in Section 6. The
experimental results are discussed in Section 7. In Section 8 we describe related
work and conclude in Section 9 by summarizing our guidance for practitioners.

The notation used in this paper is as follows: X ∈ Rn×D represents the
dataset in the high-dimensional space, that is, X consists of n data points, Xi,
each of length D, the dimension of the data. We want to reduce the dimension
of these points resulting in the dataset, Y ∈ Rn×d, where d < D.

2 Dimension Reduction Using Transformation

We next briefly describe the transform-based techniques, including PCA and four
popular NLDR techniques: Isomap, Locally Linear Embedding (LLE), Laplacian
Eigenmaps, and Local Tangent Space Alignment (LTSA) [5, 6]. These methods
share the use of an eigendecomposition to obtain a lower-dimensional embedding
of the data that is guaranteed to provide global optimality.

Principal Component Analysis (PCA): PCA [3] is a linear technique that
preserves the largest variance in the data while decorrelating the transformed
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dataset. An eigenvalue problem to the data covariance matrix, C, is formulated
as CM = λM . The eigenvectors, M , corresponding to the significant eigenvalues,
λ, form a basis for linear transformation that optimally maximizes the variance
in the data. The low-dimensional representation is expressed by Y = XM and
the eigenvalues can be used to determine the lower dimensionality, d.

PCA does not require any parameter to be set. It has a computational cost
of O(D3) and requires O(D2) memory.

Isomap: The Isomap method [7] preserves pairwise geodesic distances between
data points. It starts by constructing an adjacency graph based on the neighbors
of each point in the input space. These neighbors can be either the k-nearest
neighbors or points which lie within an ε-neighborhood. Next, the geodesic dis-
tances [8, 9] between all pairs of points are estimated by computing their shortest
path distances over the graph. Let DG = {dG(i, j)}i,j=1,...,n be the matrix of
geodesic distances, where dG(i, j) is the distance between point i and j. Isomap
then constructs an embedding in a d-dimensional Euclidean space such that
the pair-wise Euclidean distances between points in this space approximate the
geodesic distances in the input space. Let DY = {dY (i, j)}i,j=1,...,n be the Eu-
clidean distance matrix and dY (i, j) = ‖Yi − Yj‖2. The goal is to minimize the
cost function ‖τ(DG)−τ(DY )‖2, where the function τ performs double centering
on the matrix to support efficient optimization. The optimal solution is found by
solving the eigen-decomposition of τ(DG). The Y coordinates are then computed
based on the d largest eigenvalues and their corresponding eigenvectors.

Isomap requires one parameter k (or ε), has a computational cost of O(n3)
and requires O(n2) memory.

Locally Linear Embedding (LLE): The LLE method [10] preserves the re-
construction weights ωij that are used to describe a data point Xi as a linear
combination of its neighbors Xj , j ∈ N (i), where N (i) is the set of neighbors
of point i. The optimal weights for each i are obtained by minimizing the cost
function, min

ω
{‖Xi −

∑
j∈N (i) ωijXj‖2

∣∣∣ ∑
j∈N (i) ωij = 1}. LLE assumes that

the manifold is locally linear and hence the reconstruction weights are invariant
in the low-dimensional space. The embedding Y of LLE is obtained from the
eigenvectors corresponding to the smallest d nonzero eigenvalues of the embed-
ding matrix, defined as M = (I −W )T(I −W ), where W is the reconstruction
weight matrix with elements Wij = 0 if j /∈ N (i); Wij = ωij otherwise; and I is
an identity matrix.

LLE requires one parameter k (or ε), has a computational cost of O(pn2)
and requires O(pn2) memory, where p is the fraction of non-zero elements in the
sparse matrix.

Laplacian Eigenmaps: This method provides a low-dimensional representa-
tion in which the weighted distances between a data point and other points
within an ε-neighborhood (or k-nearest neighbors) are minimized [11]. The dis-

tances to the neighbors are weighted using the Laplacian operator Wij = e−
‖Xi−Xj‖

2

t .
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Here, t = 2σ2, where σ is the standard deviation of the Gaussian kernel. The
representation of Y is computed by solving the generalized eigenvector problem:
(S −W )v = λSv, where Sii =

∑
j Wij . Only the eigenvectors (v) corresponding

to the smallest nonzero eigenvalues (λ) are used for the embedding.
Laplacian Eigenmaps requires two parameters k (or ε) and t, has a compu-

tational cost of O(pn2) and requires O(pn2) memory.

Local Tangent Space Alignment (LTSA): The LTSA method [12] applies
PCA on the neighborhood of each data point, forming a local tangent space
that represents the local geometry. Those local tangent spaces are then aligned
to construct the global coordinate system of the underlying manifold. LTSA
requires one parameter k and the determination of d before applying the method.
It has a computational cost of O(pn2) and requires O(pn2) memory.

3 Dimension Reduction Using Feature Subset Selection

We consider four methods which are applicable when the dataset is labeled.

Stump Filter: A stump is a decision tree with only the root node; the stump
filter ranks features using the same process as the one used to create the root
node. Decision trees split the data by examining each feature and finding the split
that optimizes an impurity measure. To search for the optimal split for a numeric
feature x, the feature values are sorted (x1 < x2 < ... < xn) and all mid-points
(xi + xi+1)/2 are evaluated as possible splits using a given impurity measure.
The features are then ranked according to their optimal impurity measures. In
our work, we use the Gini index [13] as a measure of the impurity.

Distance Filter This filter calculates the class separability of each feature us-
ing the Kullback-Leibler (KL) distance between histograms of feature values.
For each feature, there is one histogram for each class. In a two class problem, if
a feature has a large distance between the histograms for the two classes, then
it is likely to be an important feature in differentiating between the classes. We
discretized numeric features using

√
|n|/2 equally-spaced bins, where |n| is the

size of the data. Let pj(d = i|c = a) be an estimate of the probability that the j-
th feature takes a value in the i-th bin of the histogram given a class a. For each
feature j, we calculate the class separability as ∆j =

∑c
a=1

∑c
b=1 δj(a, b), where

c is the number of classes and δj(a, b) is the KL distance between histograms cor-

responding to classes a and b: δj(a, b) =
∑B

i=1 pj(d = i|c = a) log
(

pj(d=i|c=a)
pj(d=i|c=b)

)
,

where B is the number of bins in the histograms. The features are ranked simply
by sorting them in descending order of the distances ∆j (larger distances mean
better separability).

Chi-squared Filter: The Chi-squared filter computes the Chi-square statistics
from contingency tables for every feature. The contingency tables have one row
for every class label and the columns correspond to possible values of the feature
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Table 1. A 2×3 contingency table, with observed and expected frequencies (in paren-
thesis) of a fictitious feature f1 that takes on 3 possible values (=1, 2, and 3).

Class f1=1 f1=2 f1=3 Total

0 31 (22.5) 20 (21) 11 (18.5) 62

1 14 (22.5) 22 (21) 26 (18.5) 62

Total 45 42 37 124

(see Table 1, adapted from [14]). Numeric features are represented by histograms,
so the columns of the contingency table are the histogram bins. The Chi-square
statistic for feature j is χ2

j =
∑

i
(oi−ei)

2

ei
, where the sum is over all the cells in

the r×c contingency table, where r is the number of rows and c is the number of
columns; oi stands for the observed value (the count of the items corresponding
to the cell i in the contingency table); and ei is the expected frequency of items
calculated as: ei = (column total)×(row total)

grand total . The variables are ranked by sorting
them in descending order of their χ2 statistics.

ReliefF: ReliefF [15] estimates the quality of features by calculating how well
they distinguish between instances close to each other. It starts by taking an
instance i at random and identifies its nearest k hits (Hi) and misses (Mi),
which are the closest instances of the same and different classes, respectively.
Then, it obtains the quality estimate of a feature s, which for a two-class dataset
is defined as: Qs =

∑n
i=1

{∑
m∈Mi

‖Xis−Xms‖
nk −

∑
h∈Hi

‖Xis−Xhs‖
nk

}
where Xis

is the value of feature s for instance i. By increasing the quality estimate when
the selected point and its misses have different values of feature s, and decreasing
it when the point and its hits have different values of the feature, ReliefF ranks
the features based on their ability to distinguish between instances of the same
and different classes.

4 Determining the Intrinsic Dimensionality of the Data

An important issue in dimension reduction is the choice of the number of di-
mensions for the low-dimensional solution. The intrinsic dimension of the data
is the minimum number of variables necessary to represent the observed proper-
ties of the data. While many algorithms require the intrinsic dimensionality of
the embedding be explicitly set, only a few provide an estimate of this number.

In feature subset selection methods, we can easily identify the number of
features to select by considering the metric used to order the features and disre-
garding features ranked lower than a certain threshold value. Or, we can include
a noise feature and disregard any features ranked lower than this noise feature.

In the case of PCA, an adequate number of principal components is identified
by ordering the eigenvalues and selecting the top d significant principal compo-
nents, with the remainder describes the reconstruction error: Ed =

∑D
j=d+1 λj
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[16]. Many selection critera have been developed based on the magnitude of
eigenvalues. In our work, we use the number of eigenvalues that exceed a fixed
percentage of the largest eigenvalue [17]. For example, we use d10 to indicate the
number of eigenvalues that exceed 10 percent of the largest eigenvalue.

For nonlinear methods, the use of the eigen-spectrum only works when the
data lie on a linear manifold [18]; so, we need to consider other methods. One
such approach applicable to Isomap and LLE is based on the elbow test using a
lack-of-fit measure. We first determine the property that the NLDR technique is
trying to preserve. The deviation between the property in the low-dimensional
space and the input space is plot against the dimensionality and the intrinsic
dimension is chosen at the “elbow” in the plot where after a certain number
of dimensions, the lack-of-fit value is not reduced substantially. For Isomap the
lack-of-fit measure is the residual variances of the two geodesic distance matri-
ces evaluated in the representation space and in the input space. For LLE, we
use the reconstruction error. The reconstruction weights are updated using the
embedding vectors Yi and then applied to the input data Xi. The intrinsic di-
mensionality d can be estimated by the values of reciprocal cost function [10],
defined as f(W (d)) =

∑
i ‖Xi −

∑
j W

(d)
ij Xj‖2, where W (d) is the reconstruction

weight matrix computed using the d-dimensional representation vectors Yi.
An alternate approach is to determine the locally linear scale using simple

box counting. Let C(r) indicate the number of data points that are contained
within a ball of radius r centered on a data point. If the data are sampled over a
d-dimensional manifold, then C(r) is proportional to rd for small r. The intrinsic
dimensionality at the locally linear scale is d = ∂ ln C(r)

∂ ln r . Since datasets have finite
samples in practice, we can obtain the estimate by plotting ln C(r) versus ln r
and measuring the slope of the linear part of the curve [19].

And finally, we can use the statistical estimation of intrinsic dimensionality
[20], which is based on the assumption that the topological hypersurface in a local
region can be approximated by a linear hypersurface of the same dimensionality.
We start by calculating the distances between all points. Then, for each point i,
we find the closest neighbor j0; the vector connecting i to j0 forms a subspace of
dimension one. We then consider the next closest neighbor j1 to i, and consider
the angle between the vector connecting i and j1 and the subspace. These vectors
connecting i and its l closest neighbors form an l-dimensional space. We continue
increasing the size of l until, for a certain dimension, d, the mean of the angles
taken over all points is less than a threshold.

5 Datasets Used in the Evaluation

We evaluate the dimension reduction techniques using classification problems in
three science domains: astronomy, wind energy, and remote sensing.

5.1 Astronomy Dataset

This dataset is used to build a model to classify radio-emitting galaxies into
two classes - one with a bent-double morphology (called ‘bents’) and the other
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Fig. 1. Examples of bent-double (left two) and non-bent double (right two) radio-
emitting galaxies.

without (called ‘non-bents’) (Figure 1). These data are from the Faint Images
of the Radio Sky at Twenty-cm (FIRST) survey [21]. The astronomers first
processed the raw image data to create a ‘catalog’ by fitting two-dimensional,
elliptic Gaussians to each galaxy. Each entry in the catalog corresponds to a
Gaussian and includes information such as the location and size of the Gaussian,
the major and minor axes of the ellipse, and the peak flux. This catalog was
then processed to group nearby Gaussians into galaxies and extract features,
such as angles and distances, that represented each galaxy. The focus was on
galaxies composed of three Gaussians and the features included those obtained
by considering each Gaussian individually, considering the Gaussians taken two
at a time, and considering all three Gaussians.

This dataset, which we refer to as the First dataset, is quite small, consisting
of 195 examples, with 167 bents and 28 non-bents, each described by 99 features,
of which 9 are non-numeric. In addition, we also consider a derived dataset, which
we refer to as FirstTriples, containing only the 20 numeric features for all three
Gaussians. The astronomers thought this subset to be a better representation of
the bent galaxies.

5.2 Wind Energy Dataset

Our next application area is wind power generation. The task is one of using the
weather conditions provided by meteorological towers in the region of the wind
farms to classify days which will have ramp events. A ramp event occurs when
the wind power generation suddenly increases or decreases by a large amount
in a short time (Figure 2). These events make it difficult for the control room
operators to schedule wind energy on the power grid. If we can use the weather
conditions to predict if a day will have a ramp event, the grid operators can be
better prepared to keep the grid balanced in the presence of these events.

In this dataset, we have 731 examples representing the data for the days
in 2007-2008. The features are the daily averages of different variables, such
as wind speed, wind direction, and temperature, at three meteorological towers
in the Tehachapi Pass region. Each tower provides 7 features, for a total of
21 features. Each day is assigned a binary class variable, indicating if a ramp
event exceeding a certain magnitude occurred in any 1 hour interval during that
day. There are two datasets, Wind115 and Wind150, which correspond to ramps
with magnitudes exceeding 115 MW and 150 MW, respectively. That is, in the
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Fig. 2. Wind power generation from the wind farms in the Tehachapi Pass region in
Southern California for January 2008.

Fig. 3. Example of a region in satellite imagery illustrating the ground truth with
inhabited tiles (left) and uninhabited tiles (right). Original satellite image by GeoEye
(formerly Space Imaging).

Wind115 dataset, a day is assigned a label of 1 if during any one hour interval,
the wind power generation increased or decreased by more than 115 MW.

5.3 Remote Sensing Dataset

Our third application area is remote sensing, where the task is to classify tiles
in satellite images of the earth as being inhabited or uninhabited (Figure 3;
data from the IKONOS satellite (www.geoeye.com)). The data are available as
4-band multi-spectral (near-infrared, red, green, and blue) images at 4 meter
ground sample distance. An image is divided into non-overlapping tiles of size
64× 64 pixels. Each tile is represented by several texture features as the domain
experts believed that texture could indicate man-made structures, such as houses
or parking lots where there is certain regular structure that can be represented
as a ‘texture’. However, as they were not sure which texture feature was the most
appropriate, they extracted several, including the Grey Level Co-occurrence Ma-
trix (GLCM), the power spectrum texture features, the wavelet texture features,
and the Gabor texture features [22–24]. Further, as it was not clear which of the
4-bands had the most relevant information, the domain experts extracted the
texture features for each band and concatenated them, resulting in a long fea-
ture vector of 496 features (124 from each band), representing a tile. Since this



9

dataset was very large, both in the number of examples and in the number of
features, we created a smaller subset, which we refer to as RemoteSmall, for
use in our experiments. This subset contains all the features from the Remote
dataset, but has only 2000 examples, distributed equally among inhabited and
uninhabited tiles.

6 Evaluation Methodology

We evaluate the effectiveness of the dimension reduction methods using the
classification accuracy of the transformed or selected features relative to the
accuracy using all the original features. In our work, we consider decision tree
classifiers as their results, being easily interpreted, can be explained to domain
scientists. Also, decision tree classifiers utilize the order of the significance of
features [25], making them suitable for our use as the features in the lower
dimensional space are ordered using either the magnitude of eigenvalues or a
metric that determines the discriminating ability of a feature. We could have
also used other classifiers such as support vector machines or neural networks,
but their results are not as easily interpreted. We could have also used sparse
methods which incorporate feature selection [26, 27], but they are more suitable
for regression problems.

In our work, we used the ensemble approach proposed in [28] as it gives more
accurate results than bagging or boosting. This approach creates ensembles by
introducing randomization at each node of the tree in two ways. It first randomly
samples the examples at a node and selects a fraction (we use 0.7) for further
consideration. Then, for each feature, instead of sorting these examples based on
the values of the feature, it creates a histogram, evaluates the splitting criterion
(we use Gini [13]) at the mid-point of each bin of the histogram, identifies the
best bin, and then selects the split point randomly in this bin. The randomization
is introduced both in the sampling and in the choice of the split point. The use
of the histograms speeds up the creation of each tree in the ensemble. We use
10 trees in the ensemble. Using the first d transformed features, we report the
percentage error rate obtained for five-fold cross validation repeated five times
and evaluate how this error rate changes as the number of features is increased.

We observe that our use of a classifier for evaluation may favor the feature
selection methods as they exploit the class label in the ordering of features by
importance. In contrast, data transformation methods are unsupervised, try-
ing to find hidden structure of the data without knowledge of the class labels.
Consequently, the feature selection methods may have an advantage with our
evaluation criterion, though we expect that in comparison to the error rate using
all original features, the transform based methods should provide an improve-
ment.

In addition to classification accuracy, we also evaluate the dimension re-
duction methods on the insights they can provide into the data. The major
advantage of feature subset selection is that the methods identify the impor-
tant original features, which can be used to understand scientific phenomenon.
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In contrast, for the data tranformation methods, it is not easy to explain what
forms the features in the new space. In the case of PCA, since it transforms the
original data using linear combinations of the top d eigenvectors, we can consider
the values of elements of the eigenvectors for insights. The absolute values of el-
ements in the eigenvector weigh the importance of the original features for the
corresponding principal component, while the sign of the elements indicates the
correlation among the features. We use a biplot [29] to interpret PCA results,
although it is limited to top two or three features on the plot.

For the nonlinear transformation methods, the reduced dimension has been
explained in the case of datasets such as visual perception, movement and hand-
writing [7]. The data points are displayed as images that are interpolations along
straight lines in the representing coordinate space. This task becomes impossible
for scientific data sets that consists of a large number of features extracted from
low-level data and are not necessarily images. Hence, we are limited to evalu-
ating the linear correlation between the projected dimensions and the original
features to gain insights into the data.

7 Experimental Results and Discussion

We next present the experimental results for the four feature selection meth-
ods and the five transform methods on the datasets from the three problem
domains. For the low-dimensional data representations using the four NLDR
techniques, we experimented with several parameter settings. Isomap, LLE and
Laplacian Eigenmaps have a parameter k or ε, depending on whether we con-
sider the k-nearest neighbors or an ε-neighborhood. Laplacian Eigenmaps has
an additional parameter t used in the Gaussian kernel. LTSA has only a param-
eter k, but requires a determination of d before applying the method. We tested
k = 3, 5, 7, . . . , 29, ε that ranges from 1.2 to 20.0, and t = 1, 5 and 10. We then
obtained the percentage error rates for the decision tree ensemble classifier as
outlined earlier in Section 6. The same approach was used for the four feature
subset selection methods, where we obtained the percentage error rate using
the first d features. In the classification error rate plots presented in the rest of
this section, we include the best results for the four NLDR methods, the results
for PCA and the four feature subset selection methods, and the error rate for
the decision tree ensemble applied to the whole, original input data, which is
displayed as a constant horizontal line on the plots.

Table 2 summarizes the intrinsic dimension estimation using eigenvalue spec-
trum of PCA on all datasets. They are discussed together with the results of all
other intrinsic dimensionality estimations in the following.

7.1 Experiments on First and FirstTriples Datasets

Figure 4 presents the classification accuracy of dimension reduction methods
applied on the First dataset. We observe that using the reduced representations
from the five data transformation techniques is not guaranteed to provide better
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Table 2. Intrinsic dimension using PCA.

Dataset d10 d5 d1

First 21 26 36

FirstTriples 9 12 13

Wind115 & Wind150 5 8 15

RemoteSmall 2 4 11
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Fig. 4. Classification error rates using decision tree classifiers on the transformed fea-
tures (left) and the selected features (right) for the First dataset.

classification performance than using the original input data. Only the repre-
sentation of Isomap with k = 5 and LLE with k = 15 gives a smaller error
rate than the original input data when using the first few features. On the other
hand, in the results with the feature subset selection methods, Relief fails at se-
lecting useful subsets for First dataset, while the other three methods give error
rates below the horizontal line, indicating an improvement over using all original
features.

Figure 5 shows the intrinsic dimensionality of the First dataset estimated by
the four different methods. This dataset contains 90 features and there is some
variation in the estimates. In Figure 5(a), the angles obtained by the statistical
approach are plotted against the number of dimensions. The dotted line is a
threshold; we estimate the dimension as the value where the angle falls below the
threshold, that is at d = 21. This is the same as PCA d10. The locally linear scale
in Figure 5(b) indicates that the intrinsic dimensionality falls approximately
between 9 to 22 dimensions. Using the elbow test on residual variances of Isomap,
the estimate is about 18. The plot of reconstruction error in Figure 5(d) obtained
by LLE does not have an elbow shape, making it difficult to identify the intrinsic
dimensionality.

In contrast to First, the results for FirstTriples shown in Figure 6 indicates
that PCA, Isomap, LLE, and Laplacian Eigenmaps improve the error rates.
The best performance is obtained using the top 2 features from PCA and from
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(a) Statistical Approach (d =
21)

(b) Locally Linear Scale (d ≈
9 ∼ 22)

(c) Isomap with k = 5. (d ≈ 18) (d) LLE with k = 15. (d ≈ 15)

Fig. 5. Intrinsic dimensionality estimation on First dataset

Isomap, top 12 features from LLE, and top 7 features from Laplacian Eigenmaps.
However, none of the NLDR techniques perform better than the four feature
subset selection methods. In addition, since the FirstTriples dataset is derived
from First, and all methods give lower error rates on FirstTriples, it emphasizes
that the dataset is less noisy, confirming the scientists expectation.
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Fig. 6. Classification error rates using decision tree classifiers on the transformed fea-
tures (left) and selected features (right) for the FirstTriples dataset.
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(a) Statistical Approach (d =
9)

(b) Locally Linear Scale (d ≈ 8)

(c) Isomap with ε = 3.6 (d ≈ 9) (d) LLE with k = 12 (d ≈ 12)

Fig. 7. Intrinsic dimensionality estimation on FirstTriples dataset

We observe that the FirstTriples dataset, with fewer features, has a smaller
variance in the estimation of the intrinsic dimensionality in comparison to the
First dataset. This may due to the small ratio of the set cardinality n to the
number of dimensions D. In order to obtain an accurate estimation of the dimen-
sionality, it has been proven that the inequality D < 2 log10 n should be satisfied
[30]. The number of data points needed to accurately estimate the dimension of
a D-dimensional data set is at least 10

D
2 . So, in practice, if the sample size of

a dataset is small, we should try reducing the number of features using domain
information prior to determining its intrinsic dimensionality.

Figure 8 is a biplot of the First dataset. Points shown in the plots are ob-
servations represented by the top two dimensions of PCA, and lines reflect the
projections of the original features on to the new space. The length of the lines
approximates the importance of the features. To avoid a large number of over-
laps, only features whose elements in the eigenvector have absolute values that
are larger than 0.2 are shown in the plot.

Feature CoreAngl (indicated as 8 in the plot) has positive projection on to
both the first and the second dimensions. There is a negative correlation between
Feature CoreAngl and a subset of features related to angles (9, 10 and 13) and
symmetry (20). This subset of features have negative projection on to both the
first and the second dimensions. The bents observations are clustered at low
values of the distance features (45, 16, 90 and 33). The non-bents observations
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Fig. 8. Left: PCA biplot of the First dataset. Right: zoomed-in view.
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Fig. 9. Correlation between top five Isomap reduced dimensions and all original fea-
tures for First dataset.

forms a cluster at the near highest CoreAngl values, near lowest symmetries
(20) and near lowest other angle values (at 9, 10 and 13) as well as the high
distances (at 45, 16, 90 and 33). We may interpret both the first and second PC
dimensions as distance-angle dimensions. These observations support the visual
labeling process used by astronomers, where symmetry is an important feature
of bent-doubles, and angles are an important discriminating feature.

Figure 9 shows the linear correlation between Isomap dimensions and the
original features. Seven out of the top 20 features that are highly correlated to
the first Isomap dimension are also among the top 9 features PCA highly rated.
Although many features are highly correlated to the second Isomap dimension,
none of them are among the top PCA features. These are the linear relation-
ships that we can explain. Nonlinear relationships among the features are still
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unknown. In the decision tree classification, using only one dimension of Isomap
can give a better classification performance than the original dataset. It indicates
that the first dimension of Isomap captures a property of the data that reflects
the class labels.

The feature subset selection methods rank highly the features of the First
dataset which are related to symmetries and angles, consistent with what PCA
has captured for the top two PCs.
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Fig. 10. Left: PCA biplot of the FirstTriples dataset. Right: zoomed-in view.
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Fig. 11. Correlation between top five Isomap reduced dimensions and all original fea-
tures for FirstTriples dataset.
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Figure 10 displays the PCA biplot of FirstTriples. Seven out of the nine
features whose elements are significant in either one of the top two eigenvectors,
are also among those that PCA chooses for the First dataset. These features
are as well consistent with the highly ranked features from filter methods. The
result emphasizes that PCA can be a good measure for removing noise features,
although the PCA representations of First data do not improve the classification.

There is again a negative correlation between feature CoreAngl (8) and a
subset of features related to angles (9,10,13 and 14) and symmetry (20). These
features are parallel to the first PC coordinate, which tells us that the first
dimension is an angle coordinate. We can also see clusters of non-bents fall
around the extreme values of angle features, while clusters of bents have medium
angle values. The second dimension means the AriSym (19) v.s. ABAngleSide
(14) and SumComDist (16). We can see a cluster of bents that has small values
of SumComDist (16), large values of AriSym (19) and medium values of angles.
There is also a non-bent cluster at the near highest CoreAngl values, near lowest
symmetries (20) and near lowest other angle values (at 9,10 and 13). This fact
is similar to what PCA gets from First dataset. The two PCs together shows
that there exist no non-bents at the corner area where the AriSym is high and
CorAngl is low.

Figure 11 shows that Isomap dimensions have linear correlations with a sub-
set of features that are similar to what PCA dimensions have. The first dimension
of Isomap has significantly linear correlations with a subset of features. Similar
to PCA, in the first dimension there is a negative correlation between feature
CoreAngl (8) and a subset of features, containing features AngleAB (9), An-
gleAC (10), AriAgl (13) and AnotherSym (20). The second dimension of Isomap
tells its linear correlation with feature AriSym (19), which is also a main feature
in the second dimension of PCA. In the decision tree classification shown in Fig-
ure 6, both PCA and Isomap obtain best classification performance using their
top two features. This similarity in performance of PCA and Isomap strength-
ens the possibility that Isomap captures the linear properties in the FirstTriples
dataset, and it is unlikely there is a nonlinear manifold underlying the data.

Finally, we observe that the subset selection methods, PCA, and Isomap all
selected features of the FirstTriples dataset related to symmetries and angles.

7.2 Experiments on Wind115 and Wind150 Datasets

Figure 12 displays the classification results for the Wind115 dataset. It is signif-
icant that the feature subset selection techniques outperform the data transfor-
mation methods. All data transformation techniques do not reach the accuracy
of the original data. This can due to the bad labeling on the data.

The performance on Wind150 dataset, which is labeled differently, is shown in
Figure 13. We observed that all methods give lower error rates than on Wind115,
which indicates that labeling the data according to 150 MW ramps can help
identify events more significantly.

Again, the feature selection methods outperform the data transformation
techniques. Isomap and PCA are the only two data transformation techniques
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Fig. 12. Classification error rates using decision tree classifiers on the (left) transformed
features and (right) selected features for the Wind115 dataset.
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Fig. 13. Classification error rates using decision tree classifiers on the (left) transformed
features and (right) selected features for the Wind150 dataset.

that, in comparison to the original data, slightly improve the classification. The
best performance of PCA is at d = 9, and the best of Isomap is at d = 15 and
ε = 3.2 (displayed as isomapY ep32). At d = 12 the stump filter and the distance
filter reach their lowest error rates, and at d = 15 the chi-squared filter has the
lowest error rate. However, we observe that when the number of features is less
than 9, the data transformation methods are more accurate than the feature
selection methods.

Both Wind115 and Wind150 are the same dataset, but with different labeling
criteria. Hence, they have the same intrinsic dimensionality shown in Figure 14.
The estimate of statistical approach is d = 11, while locally linear scales give
d = 4. The elbow test on residual variances of Isomap gives d ≈ 9, close to the
statistical approach. The dimensionality according to the elbow test on recon-
struction error of LLE gives d ≈ 10 to 15. All are near the range of d ≈ 5 to 15
that PCA estimates.
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(a) Statistical Approach (d =
11)

(b) Locally Linear Scale (d = 4)

(c) Isomap with ε = 3.2 (d ≈ 9) (d) LLE with ε = 3.2 (d ≈ 10−
15)

Fig. 14. Intrinsic dimensionality estimation on Wind115 and Wind150 datasets
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Fig. 15. Left: PCA biplot of the Wind150 dataset. Right: zoomed-in view.

The PCA biplot of Wind150 shown in Figure 15 shows that the first co-
ordinate has two subsets of features that are negatively correlated. One is the
humidity features at three weather sites (7, 14, 21). The other subset contains
the temperature features (6, 13, 20) and the solar radiation features (2, 9, 16)
at three weather sites. The second principal component is about wind direc-
tion vector (4, 11, 18) and speed (10, 12, 17, 19) that are positively correlated.
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Fig. 16. Correlation between top five Isomap dimensions and all original features for
Wind150 dataset.

There are two clusters that are dense. One contains observations that have low
wind speeds and low wind direction vector degrees. The other cluster is at high
temperature, high solar radiation and low humidity. These charactors represent
non-ramp events, which are consistant with the labels shown on the graph. There
exits no clusters of ramp events that are obviously dense.

The linear correlation between the first five Isomap dimensions and all orig-
inal features for Wind150 is shown in Figure 16. Like PCA, the first dimension
of Isomap is linearly correlated to features of humidity, temperature, and solar
radiation at three weather sites. Similarly, the second dimension of Isomap is lin-
early correlated to wind direction vector degrees and speeds. This implies that
the isomap captures the linear relations of the data. It is not straight-forward
to determine the existence of any nonlinear relations.

Finally, the top six common features that are ranked highly by all three filters
are also the wind speed, temperature and humidity. This consistancy shows the
success of filters, PCA, and Isomap in dimension reduction.

7.3 Experiments on RemoteSmall Dataset

Figure 17 shows the classification error rates for the RemoteSmall data set. Only
50 of the 496 features are displayed because the rates become almost constant
when large numbers of features are used for all methods.

Though the feature subset selection methods still outperform the data trans-
formation techniques, all methods perform well on RemoteSmall. Isomap, LLE
and PCA have similar performance and reach the minimum error rate at 6− 9
dimensions. In contrast, Laplacian Eigenmaps reaches its best performance at



20

d = 34 and LTSA at d = 26. The result could be due to the actually high-
dimensional data with a large number of samples (n = 2000). Thus, the lower
dimensional structure exist and the data transformation methods can find them.
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Fig. 17. Classification error rates using decision tree classifiers on the (left) transformed
features and (right) selected features for the RemoteSmall dataset.

(a) Statistical Approach (d =
60)

(b) Locally Linear Scale (d = 8)

(c) Isomap with ε = 16 (d ≈ 6) (d) LLE with ε = 16

Fig. 18. Intrinsic dimensionality estimation on RemoteSmall dataset
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For RemoteSmall dataset, the statistical approach gives an intrinsic dimen-
sionality estimate of d = 60, which is quite different from d = 8 estimated using
locally linear scale. PCA gives small numbers of estimation as well. Elbow test
on Figure 18(c) shows that d = 6 is right below the cliff and the flat region begins
at around d = 20. Combining the results given in Figure 17 and Figure 18(c), we
can see that Isomap with ε = 16 gives the minimum error rate at dimensionality
close to the estimate of d ≈ 6. LLE reconstruction error seems not a reliable
indicator for estimating intrinsic dimentionality.
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Fig. 19. Left: PCA biplot of the RemoteSmall dataset. Right: zoomed-in view. Vectors
on the graph are 20 times larger than their original sizes for easier identification.

In Figure 19 the PCA biplot of RemoteSmall shows a large number of features
that project observations in the first two PCs. Features pointing to the bottom
right are all features from entropy in GLCM category, and most are green bands.
Features pointing to the left are all features from inverse difference moment in
GLCM category with green, blue and red bands. These two subsets of features
are negatively correlated. They determine the first coordinate. Most features
that point to the top are features from Gabor and wavelet categories. They
are all features of near-infrared bands. Features pointing to the bottom are
features of GLCM category with near-infrared, green, blue and red bands. They
can be used to explain the second PC. The observations form a funnel on the
plot, indicating that one dimension affects the variance of another orthogonal
dimension. It means that high GLCM values are similar in their entropy and
inverse difference moment, while low GLCM values are more varied.

The feature selection methods rank highly the features in the green and near-
infrared bands rather than the blue and red bands. The majority of the top ten
features are from the GLCM category, while the wavelet and Gabor features
are selected less frequently. Power spectrum features are rarely selected. The
GLCM features selected most often in top ten are entropy and inverse difference
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moment. These results agree with what PCA suggests. The linear correlations
between Isomap dimensions and the original features are again similar to PCA.

8 Related Work

In this paper, we have focused on a few popular data transformation methods
for dimension reduction: PCA, Isomap, LLE, Laplacian Eigenmaps and LTSA.
Many other techniques have also been proposed, including Hessian Eigenmaps
[31], neighborhood preserving methods [32, 33], diffusion maps [34], and local
tangent space analysis [35], as well as techniques that reduce the data to two
dimensions for visualization, such as t-distributed stochastic neighbor embedding
(tSNE) [36], self-organizing maps [37], and neural network-based approaches [38].

Much of the work in NLDR techniques has focused on the algorithmic as-
pects, with experiments on artificial datasets illustrating the benefits of these
methods. However, a recent comparative study [6] on several NLDR techniques
applied to both artificial and real datasets concluded that the strong perfor-
mance of these techniques on the artificial Swiss roll data does not generalize to
more complex, artificial datasets, such as those with disconnected manifolds or
manifolds with high intrinsic dimensionality. In addition, most nonlinear tech-
niques do not outperform PCA on real data sets. Another comparative study of
dimension reduction techniques [39] also shows that for data visualization pur-
poses, NLDR techniques generally perform better on the synthetic data than on
the real-world data, and the overall best performing algorithm is Isomap.

Our study does not focus on data visualization, but on practical scientific data
analysis. The experiments presented in this paper also support the conclusions
from these comparative studies. However, there are successful applications of
NLDR on real world datasets [5], and methods, such as tSNE, when used for
visualization, have been shown to provide insights into the inherent structure in
high-dimensional data [36]. It appears that the best NLDR technique depends
on the nature of the input data and on the use of the reduced representation [5].

9 Conclusions

In this paper, we describe a series of carefully-designed experiments that test,
in a useful and impartial manner, how dimension reduction methods work in
practice. We investigate two types of techniques: data transformation methods
and feature subset selection techniques. Using classification problems in five sci-
entific datasets, each exhibiting different data properties, we compare the error
rates for the original dataset with those obtained for the reduced representations
resulting from the data transformaion methods as well as feature selection tech-
niques. We also evaluate the intrinsic dimensionality of the data using estimates
obtained from PCA and two of the NLDR methods (Isomap and LLE), in ad-
dition to two classical techniques, one based on a statistical approach and the
other on a locally linear scale.
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Our experiments indicate that, while the supervised feature subset selection
techniques consistently improve the classification of all datasets, the data trans-
formation methods do not. However, it is possible to use them to find properties
of the data related to class labels. Our experiments show that both PCA and
Isomap are able to find representations that improve data classification. Since
both PCA and Isomap employ the eigenvectors corresponding to the largest
eigenvalues, they seem to perform better than methods which use the eigenvec-
tors corresponding to the smallest non-zero eigenvalues, such as LLE, Laplacian
Eigenmaps and LTSA. Like PCA, when the data tend to have strong linear
properties, Isomap can identify these properties. Isomap can also capture some
kind of nonlinear properties that PCA can not find. Although there exists appli-
cations indicating that PCA is better than Isomap in terms of classification [6],
our experiments indicate a different conclusion. We also observe that the ability
to interpret the reduced dimension made by data tranformation methods is very
limited.

Since feature subset selection techniques are computationally inexpensive, we
suggest using them first, especially as they could provide insights into the dataset
by indicating which of the original features are important. If a dataset contains
noise features, the use of feature subset selection techniques to identify and
remove possible noise features prior to the application of the data transformation
methods could also be helpful. Among the feature subset selection techniques,
the filter-based methods give more consistent results. The estimation of intrinsic
dimensionality of the dataset may vary, depending on the method used. However,
the estimate could be meaningful if it is close to the number of features that
give the best performance. For an NLDR method, this may also imply that the
method finds the lower-dimensional manifold on which the data lie, something
which is not possible with linear feature subset selection.
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